Thursday, April 22, 2010

how is soil formed

The main force reponsible for entrainment is fluid drag. The strength of fluid drag varies with the mass of the eroding medium (water is 9,000 times more dense than air) and its velocity. Fluid drag causes the particle to move because of horizontal force and vertical lift. Within a medium of erosion, both of these forces are controlled by velocity. Horizontal force occurs from the push of the agent against the particle. If this push is sufficient to overcome friction and the resistance of cohesive bonds, the particle moves horizontally. The vertical lift is produced by turbulence or eddies within the flow that push the particle upward. Once the particle is lifted the only force resisting its transport is gravity as the forces of friction, slope angle, and cohesion are now non-existent. The particle can also be transported at velocities lower than the entrainment velocities because of the reduction in forces acting on it. Transport Physical, chemical, and biological weathering act to weaken the particle bonds found in rock materials. As a result, weathered materials are normally more susceptible than unaltered rock to the forces of detachment. The agents of erosion can also exert their own forces of detachment upon the surface rocks and soil through the following mechanisms: Figure 2 shows a graph that describes the relationship between stream flow velocity and particle erosion, transport, and deposition. The curved line labeled "erosion velocity" describes the velocity required to entrain particles from the stream's bed and banks. The erosion velocity curve is drawn as a thick line because the erosion particles tends to be influenced by a variety of factors that changes from stream to stream. Also, note that the entrainment of silt and clay needs greater velocities then larger sand particles. This situation occurs because silt and clay have the ability to form cohesive bounds between particles. Because of the bonding, greater flow velocities are required to break the bonds and move these particles. The graph also indicates that the transport of particles requires lower flow velocities then erosion. This is especially true of silt and clay particles. Finally, the line labeled "settling velocity" shows at what velocity certain sized particles fall out of transport and are deposited.

No comments:

Post a Comment