Thursday, April 22, 2010

organic soil

Once a particle is entrained, it tends to move as long as the velocity of the medium is high enough to transport the particle horizontally. Within the medium, transport can occur in four different ways: Figure 1 is an image that was created from DEMs (Digital Elevation Model) for the following 1:24,000 scale topographic quadrangles: Telescope Peak, Hanaupah Canyon, and Badwater, California. To the left is the Panamint Mountain Range. To the right is Death Valley. Elevation spans from 3,368 to -83 meters and generally decreases from left to right. The blue line represents an elevation of 0 meters. Large alluvial fans extending from a number of mountain valleys to the floor of Death Valley can be seen in the right side of the image. The sediments that make up these depositional features came from the weathering and erosion of bedrock in the mountains located on the left side of the image. (This image was created with MacDEM software). Figure 2 shows a graph that describes the relationship between stream flow velocity and particle erosion, transport, and deposition. The curved line labeled "erosion velocity" describes the velocity required to entrain particles from the stream's bed and banks. The erosion velocity curve is drawn as a thick line because the erosion particles tends to be influenced by a variety of factors that changes from stream to stream. Also, note that the entrainment of silt and clay needs greater velocities then larger sand particles. This situation occurs because silt and clay have the ability to form cohesive bounds between particles. Because of the bonding, greater flow velocities are required to break the bonds and move these particles. The graph also indicates that the transport of particles requires lower flow velocities then erosion. This is especially true of silt and clay particles. Finally, the line labeled "settling velocity" shows at what velocity certain sized particles fall out of transport and are deposited. * Plucking: ice freezes onto the surface, particularly in cracks and crevices, and pulls fragments out from the surface of the rock. Many hydrologists and geomorphologists require a mathematical model to predict levels of entrainment, especially in stream environments. In these highly generalized models, the level of particle entrainment is relative to particle size and the velocity of the medium of erosion. These quantitative models can be represented graphically. On these graphs, the x-axis represents the log of particle diameter, and the y-axis the log of velocity. The relationship between these two variables to the entrainment of particles is described by a curve, and not by a straight line.

No comments:

Post a Comment