Thursday, April 22, 2010

soil amendments

The energy for erosion comes from several sources. Mountain building creates a disequilibrium within the Earth's landscape because of the creation of relief. Gravity acts to vertically move materials of higher relief to lower elevations to produce an equilibrium. Gravity also acts on the mediums of erosion to cause them to flow to base level. Erosion begins with the detachment of a particle from surrounding material. Sometimes detachment requires the breaking of bonds which hold particles together. Many different types of bonds exist each with different levels of particle cohesion. Some of the strongest bonds exist between the particles found within igneous rocks. In these materials, bonds are derived from the growth of mineral crystals during cooling. In sedimentary rocks, bonds are weaker and are mainly caused by the cementing effect of compounds such as iron oxides, silica, or calcium. The particles found in soils are held together by even weaker bonds which result from the cohesion effects of water and the electro-chemical bonds found in clay and particles of organic matter. Figure 2 shows a graph that describes the relationship between stream flow velocity and particle erosion, transport, and deposition. The curved line labeled "erosion velocity" describes the velocity required to entrain particles from the stream's bed and banks. The erosion velocity curve is drawn as a thick line because the erosion particles tends to be influenced by a variety of factors that changes from stream to stream. Also, note that the entrainment of silt and clay needs greater velocities then larger sand particles. This situation occurs because silt and clay have the ability to form cohesive bounds between particles. Because of the bonding, greater flow velocities are required to break the bonds and move these particles. The graph also indicates that the transport of particles requires lower flow velocities then erosion. This is especially true of silt and clay particles. Finally, the line labeled "settling velocity" shows at what velocity certain sized particles fall out of transport and are deposited. Figure 2: This graph describes the relationship between stream flow velocity and particle erosion, transport, and deposition. (Source: PhysicalGeography.net) Detachment * Cavitation: intense erosion due to the surface collapse of air bubbles found in rapid flows of water. In the implosion of the bubble, a micro-jet of water is created that travels with high speeds and great pressure producing extreme stress on a very small area of a surface. Cavitation only occurs when water has a very high velocity, and therefore its effects in nature are limited to phenomenon like high waterfalls. Solar radiation and its influence on atmospheric processes is another source of energy for erosion. Rainwater has a kinetic energy imparted to it when it falls from the atmosphere. Snow has potential energy when it is deposited in higher elevations. This potential energy can be converted into the energy of motion when the snow is converted into flowing glacial ice. Likewise, the motion of air because of differences in atmospheric pressure can erode surface material when velocities are high enough to cause particle entrainment. * Traction is the movement of particles by rolling, sliding, and shuffling along the eroded surface. This occurs in all erosional mediums. The critical entrainment velocity curve suggests that particles below a certain size are just as resistant to entrainment as particles with larger sizes and masses (Figure 2). Fine silt and clay particles tend to have higher resistance to entrainment because of the strong cohesive bonds between particles. These forces are far stronger than the forces of friction and gravity.

No comments:

Post a Comment