Thursday, April 22, 2010

soil moisture meter

Introduction The Erosion Sequence The main force reponsible for entrainment is fluid drag. The strength of fluid drag varies with the mass of the eroding medium (water is 9,000 times more dense than air) and its velocity. Fluid drag causes the particle to move because of horizontal force and vertical lift. Within a medium of erosion, both of these forces are controlled by velocity. Horizontal force occurs from the push of the agent against the particle. If this push is sufficient to overcome friction and the resistance of cohesive bonds, the particle moves horizontally. The vertical lift is produced by turbulence or eddies within the flow that push the particle upward. Once the particle is lifted the only force resisting its transport is gravity as the forces of friction, slope angle, and cohesion are now non-existent. The particle can also be transported at velocities lower than the entrainment velocities because of the reduction in forces acting on it. Figure 2 shows a graph that describes the relationship between stream flow velocity and particle erosion, transport, and deposition. The curved line labeled "erosion velocity" describes the velocity required to entrain particles from the stream's bed and banks. The erosion velocity curve is drawn as a thick line because the erosion particles tends to be influenced by a variety of factors that changes from stream to stream. Also, note that the entrainment of silt and clay needs greater velocities then larger sand particles. This situation occurs because silt and clay have the ability to form cohesive bounds between particles. Because of the bonding, greater flow velocities are required to break the bonds and move these particles. The graph also indicates that the transport of particles requires lower flow velocities then erosion. This is especially true of silt and clay particles. Finally, the line labeled "settling velocity" shows at what velocity certain sized particles fall out of transport and are deposited. Figure 1 is an image that was created from DEMs (Digital Elevation Model) for the following 1:24,000 scale topographic quadrangles: Telescope Peak, Hanaupah Canyon, and Badwater, California. To the left is the Panamint Mountain Range. To the right is Death Valley. Elevation spans from 3,368 to -83 meters and generally decreases from left to right. The blue line represents an elevation of 0 meters. Large alluvial fans extending from a number of mountain valleys to the floor of Death Valley can be seen in the right side of the image. The sediments that make up these depositional features came from the weathering and erosion of bedrock in the mountains located on the left side of the image. (This image was created with MacDEM software). * Suspension is where the particles are carried by the medium without touching the surface of their origin. This can occur in air, water, and ice.

The Erosion Sequence Solar radiation and its influence on atmospheric processes is another source of energy for erosion. Rainwater has a kinetic energy imparted to it when it falls from the atmosphere. Snow has potential energy when it is deposited in higher elevations. This potential energy can be converted into the energy of motion when the snow is converted into flowing glacial ice. Likewise, the motion of air because of differences in atmospheric pressure can erode surface material when velocities are high enough to cause particle entrainment. * Traction is the movement of particles by rolling, sliding, and shuffling along the eroded surface. This occurs in all erosional mediums. The energy for erosion comes from several sources. Mountain building creates a disequilibrium within the Earth's landscape because of the creation of relief. Gravity acts to vertically move materials of higher relief to lower elevations to produce an equilibrium. Gravity also acts on the mediums of erosion to cause them to flow to base level. * Plucking: ice freezes onto the surface, particularly in cracks and crevices, and pulls fragments out from the surface of the rock. Entrainment Forces * Raindrop impact: the force of a raindrop falling onto a soil or weathered rock surface is often sufficient to break weaker particle bonds. The amount of force exerted by a raindrop is a function of the terminal velocity and mass of the raindrop.

No comments:

Post a Comment