Thursday, April 22, 2010

soil sampling

Saltation is where the particle moves from the surface to the medium in quick continuous repeated cycles. The action of returning to the surface usually has enough force to cause the entrainment of new particles. This process is only active in air and water. Figure 2 shows a graph that describes the relationship between stream flow velocity and particle erosion, transport, and deposition. The curved line labeled "erosion velocity" describes the velocity required to entrain particles from the stream's bed and banks. The erosion velocity curve is drawn as a thick line because the erosion particles tends to be influenced by a variety of factors that changes from stream to stream. Also, note that the entrainment of silt and clay needs greater velocities then larger sand particles. This situation occurs because silt and clay have the ability to form cohesive bounds between particles. Because of the bonding, greater flow velocities are required to break the bonds and move these particles. The graph also indicates that the transport of particles requires lower flow velocities then erosion. This is especially true of silt and clay particles. Finally, the line labeled "settling velocity" shows at what velocity certain sized particles fall out of transport and are deposited. Erosion begins with the detachment of a particle from surrounding material. Sometimes detachment requires the breaking of bonds which hold particles together. Many different types of bonds exist each with different levels of particle cohesion. Some of the strongest bonds exist between the particles found within igneous rocks. In these materials, bonds are derived from the growth of mineral crystals during cooling. In sedimentary rocks, bonds are weaker and are mainly caused by the cementing effect of compounds such as iron oxides, silica, or calcium. The particles found in soils are held together by even weaker bonds which result from the cohesion effects of water and the electro-chemical bonds found in clay and particles of organic matter.

No comments:

Post a Comment