Thursday, April 22, 2010

loamy soil

Transport Particle weight, size, shape, surface configuration, and medium type are the main factors that determine which of these processes operate. Entrainment Forces The main force reponsible for entrainment is fluid drag. The strength of fluid drag varies with the mass of the eroding medium (water is 9,000 times more dense than air) and its velocity. Fluid drag causes the particle to move because of horizontal force and vertical lift. Within a medium of erosion, both of these forces are controlled by velocity. Horizontal force occurs from the push of the agent against the particle. If this push is sufficient to overcome friction and the resistance of cohesive bonds, the particle moves horizontally. The vertical lift is produced by turbulence or eddies within the flow that push the particle upward. Once the particle is lifted the only force resisting its transport is gravity as the forces of friction, slope angle, and cohesion are now non-existent. The particle can also be transported at velocities lower than the entrainment velocities because of the reduction in forces acting on it. Entrainment Forces Figure 1 is an image that was created from DEMs (Digital Elevation Model) for the following 1:24,000 scale topographic quadrangles: Telescope Peak, Hanaupah Canyon, and Badwater, California. To the left is the Panamint Mountain Range. To the right is Death Valley. Elevation spans from 3,368 to -83 meters and generally decreases from left to right. The blue line represents an elevation of 0 meters. Large alluvial fans extending from a number of mountain valleys to the floor of Death Valley can be seen in the right side of the image. The sediments that make up these depositional features came from the weathering and erosion of bedrock in the mountains located on the left side of the image. (This image was created with MacDEM software).

No comments:

Post a Comment